

RNAseq analysis

Bioinformatics Analysis Team

McGill University and Genome Quebec Innovation Center bioinformatics.service@mail.mcgill.ca

Creatry Content

The paper is another to the University Languages Affrance Functions: Calculate Device Device

Latert here is distribute your work using this instrum

Why sequence RNA?

- Functional studies
 - Genome may be constant but experimental conditions have pronounced effects on gene expression
- Some molecular features can only be observed at the RNA level
 - Alternative isoforms, fusion transcripts, RNA editing
- Interpreting mutations that do not have an obvious effect on protein sequence
 - 'Regulatory' mutations
- Prioritizing protein coding somatic mutations (often heterozygous)

RNA-seq – Applications

- Gene expression and differential expression
- Transcript discovery
- SNV, RNA-editing events, variant validation
- Allele specific expression
- Gene fusion events detection
- Genome annotation and assembly
- etc ...

RNAseq Challenges

- RNAs consist of small exons that may be separated by large introns
 - Mapping splice-reads to the genome is challenging
 - Ribosomal and mitochondrial genes are misleading
- RNAs come in a wide range of sizes
 - Small RNAs must be captured separately
- RNA is fragile and easily degraded
 - Low quality material can bias the data

RNA-Seq: Overview

RNA-Seq: Input Data

Input Data: FASTQ

End 1

Controll_Rl.fastq.gz

Control2_R1.fastq.gz

KnockDownI_RI.fastq.gz

KnockDown2_R1.fastq.gz

End 2 Control1_R2.fastq.gz Control2_R2.fastq.gz KnockDown1_R2.fastq.gz KnockDown2_R2.fastq.gz

~ 10Gb each sample

Where Q is the quality and p is the probability of the base being incorrect.

 $Q = -10 \log_10 (p)$

	ase quan
Base Quality	P _{error} (obs. base)
3	50 %
5	32 %
10	10 %
20	1 %
30	0.1 %
40	0.01 %

bioinformatics...

Project Details Samples (41) Lib		raries (32) HiSeq Read Sets (64)		Read Sets S	Search D	Assemblies (0)							
Uploaded Analyses (0)													
	L COLU		JP-1 P			Dennela	of Deed Film					a	and the second second
	Cav	VIEW	W38LFI	iver		Downio	ad read Files					3	/ Help with Icons
Rea	ad Sets	(64 eleme	ents)									Add/Remove (Column 🕴
	Name	Multiplex Key	Run	Region	QC	Status	Number of reads	Number of Bases	Average Quality	% Duplicate	% Passed Filter	Reads Fastq R1	Reads Fastq R2
	W24P	Index_7	1177	4	QC	6	45,373,280	9,074,656,000	33	21.674	100	(4562MB)	(4546MB)
	<u>W25P</u>	Index_8	1177	4	QC	6	45,066,800	9,013,360,000	33	17.943	100	(4527MB)	H(4513MB)
0	W29P1	Index_9	1177	4	QC	6	70,319,214	14,063,842,800	33	17.51	100	(7061MB)	(7038MB)
	W16P1	Index_6	1177	4	QC	6	55,160,915	11,032,183,000	33	14.447	100	(5553MB)	(5529MB)
8	W29P1	Index_9	1177	3	QC	6	70,276,618	14,055,323,600	33	17.58	100	H(7029MB)	H(7012MB)
	W25P	Index_8	1177	3	QC	6	45,097,360	9,019,472,000	33	18.036	100	H(4512MB)	H(4503MB)
8	W24P	Index_7	1177	3	QC	6	45,502,426	9,100,485,200	33	21.815	100	(4557MB)	(4545MB)
	W16P1	Index_6	1177	3	QC	6	55,290,201	11,058,040,200	33	14.542	100	(5545MB)	H(5527MB)

Positional Base-Content

Species composition (via BLAST)

Blast Results (20 elements)	
Species	Hit Count
1 Mus_musculus	89,696
PREDICTED:_Mus	2,898
3 Mouse_DNA	1,579
4 TSA:_Anolis	1,217
5 Synthetic_construct	1,202
6 Rattus_norvegicus	571
7 PREDICTED:_Rattus	463
8 PREDICTED:_Dasypus	245
PREDICTED:_Cricetulus	238
10 PREDICTED:_Ceratotherium	140
11 Xenopus_laevis	97
12 TSA:_Nannochloropsis	74
13 Human_DNA	65
14 Trachemys_scripta	61
15 Chain_2,	55
16 TSA:_Nothobranchius	54
17 PREDICTED:_Odobenus	40
18 PREDICTED:_Nomascus	38
¹⁹ Chain_5,	37
20 Mus_musculus,	31

RNA-Seq: Trimming and Filtering

Read Filtering

• Clip Illumina adapters:

• Trim trailing **quality** < 30

• Filter for read **length** \geq 32 bp

RNA-Seq: Mapping

Assembly vs. Mapping

Read Mapping

Ultrafast and memory-efficient alignment of short DNA sequences to the human genome Ben Langmead, Cole Trapnell, Mihai Pop and Steven L Salzberg

- Mapping problem is challenging:
 - Need to map millions of short reads to a genome
 - Genome = text with billons of letters
 - Many mapping locations possible
 - NOT exact matching: sequencing errors and biological variants (substitutions, insertions, deletions, splicing)
- Clever use of the **Burrows-Wheeler Transform** increases speed and reduces memory footprint
- Other mappers: BWA, Bowtie, STAR, GEM, etc.

Bowtie alignment performance versus SOAP and Maq										
	Platform	CPU time	Wall clock time	Reads mapped per hour (millions)	Peak virtual memory footprint (megabytes)	Bowtie speed-up	Reads aligned (%)			
Bowtie	PC	16 m 41 s	17 m 57 s	29.5	1,353	/>	71.9			
Maq		17 h 46 m 35 s	17 h 53 m 7 s	0.49	804	59.8×	74.7			

TopHat: Spliced Reads

Map reads to whole genome with Bowtie **Bowtie-based** TopHat: finds/maps to Collect initially unmappable reads possible splicing junctions. Assemble consensus of Important to covered regions assemble transcripts Generate possible later (cufflinks) splices between qt aq aq neighboring exons Kim et al. Genome Biology 2013, 14:R36 Genome **Biology** http://genomebiology.com/2013/14/4/R36 Build seed table METHOD **Open Access** index from TopHat2: accurate alignment of transcriptomes in unmappable reads the presence of insertions, deletions and gene fusions Daehwan Kim^{1,2,3*}, Geo Pertea³, Cole Trapnell^{5,6}, Harold Pimentel⁷, Ryan Kelley⁸ and Steven L Salzberg^{3,4} Map reads to possible splices via seed-andgt

extend

SAM/BAM

Control I.bam

Control2.bam SRR013667.1 99 19 8882171 60 76M = 8882214 119 NCCAGCAGCCATAACTGGAAT GGGAAATAAACACTATGTTCAA AG

KnockDown1.bam

KnockDown2.bam SRR013667.1 99 19 8882171 60 76M = 8882214 119 NCCAGCAGCCATAACTGGAATGGG AAATAAACACTATGTTCAAAG ~ 10Gb each bam

- Used to store alignments
- SAM = text, BAM = binary

SAM: Sociano Alianmont/Mon format

The BAM/SAM format

SAMtools

<u>Picard</u>

samtools.sourceforge.net

picard.sourceforge.net

Sort, View, Index, Statistics, Etc.

\$ samtools flagstat C1.bam 110247820 + 0 in total (QC-passed reads + QC-failed reads) 0 + 0 duplicates 110247820 + 0 mapped (100.00%:nan%) 110247820 + 0 paired in sequencing 55137592 + 0 read1 55110228 + 0 read2 93772158 + 0 properly paired (85.06%:nan%) 106460688 + 0 with itself and mate mapped 3787132 + 0 singletons (3.44%:nan%) 1962254 + 0 with mate mapped to a different chr 738766 + 0 with mate mapped to a different chr (mapQ>=5) \$

RNA-Seq: Alignment QC

RNA-seQc summary statistics

Sample	Raw reads	Surviving reads	%	Aligned read	%	Alternative aligments	%	rRNA reads	%	Coverage	Exonic Rate	Genes
SRR032239	75863506	73901226	97	32623314	44	9551452	29	0	0	10	0.89	23659
SRR032271	90133262	86099068	96	36723524	43	11732251	32	0	0	11	0.85	24614
SRR032238	76849376	69978578	91	31360242	45	12406875	40	0	0	8	0.79	25595
SRR032272	95302396	92029240	97	38476617	42	12749003	33	0	0	10	0.83	25618
SRR032270	66809402	63033594	94	27645755	44	7250171	26	0	0	10	0.92	23395
SRR032240	75268300	67112328	89	31345651	47	9268748	30	0	0	10	0.88	24825

RNA-SeQC: RNA-seq metrics for quality control and process optimization

David S. DeLuca^{*}, Joshua Z. Levin, Andrey Sivachenko, Timothy Fennell, Marc-Danie Nazaire, Chris Williams, Michael Reich, Wendy Winckler and Gad Getz^{*} The Broad Institute of MIT and Harvard, Cambridge, MA, USA

broadinstitute.org/cancer/cga/rna-seqc

RNA-seQc covergae graph

Home-made Rscript: saturation

RPKM Saturation Analysis

Q1 saturation

Resampling precentage

RNA-Seq:Wiggle

UCSC: bigWig Track Format

- The bigWig format is for display of dense, continuous data that will be displayed in the Genome Browser as a graph.
- Count the number of read (coverage at each genomic position:

Modified from http://biowhat.ucsd.edu/homer/chipseq/ucsc.html

RNA-Seq:Gene-level counts

HTseq:Gene-level counts

 Reads (BAM file) are counted for each gene model (gtf file) using HTSeq-count:

Control1 Control2 KnockDown1 KnockDown2 TSPAN6 11 16 4 5 TNMD 1 0 0 0 DPM1 435 743 836 739 SCYL3 203 218 416 352 C1orf112 216 643 704 714 2365 2828 FGR 5011 2294 CFH 6 1 4 0 FUCA2 380 865 431 523 ... ••• ••• ••• 888 827 1674 1580 NFYA

HTSeq

www-huber.embl.de/users/anders/HTSeq

RNA-seq: EDA

gqSeqUtils R package: **Exploratory Data** Analysis

RNA-Seq:Gene-level DGE

Home-made Rscript: Gene-level DGE

- edgeR and DESeq : Test the effect of exp. variables on gene-level read counts
- GLM with negative binomial distribution to account for biological variability (not Poisson!!)

edgeR

DEseq

Differential Gene Expression

SYMBOL	logFC	PValue	FDR	counts.C1	counts.C2	counts.KD1	counts.KD2
HNRNPC	-5.26	9.19E-55	5.71E-50	12611	12404	244	443
FAIM2	-4.82	8.02E-29	2.49E-24	191	194	11	3
AC019178	-6.57	2.14E-28	4.42E-24	100	104	1	1
SSC5D	-2.95	2.39E-27	3.71E-23	2274	2123	318	276
GGT5	-3.03	1.03E-26	1.28E-22	838	803	93	117
EXOC3L4	-3.07	9.19E-21	9.51E-17	359	344	53	34
FOXS1	-4.02	1.69E-19	1.49E-15	113	92	5	8
AQP5	-3.73	2.82E-19	2.18E-15	106	113	9	8
SLC27A3	-2.39	6.97E-18	4.81E-14	736	637	144	129
TIMP4	-3.29	1.21E-17	7.52E-14	126	120	14	12

<u>Downstream Analyses</u> Pathways/Gene Set (e.g. **GOSeq**)

Regulatory Networks

Machine Learning / Classifiers

RNA-Seq:Transcriptlevel DGE

Cufflinks: transcipt assembly

• **Assembly**: Reports the most parsimonious set of transcripts (*transfrags*) that explain splicing junctions found by *TopHat*

Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks

Cole Trapnell^{1,2}, Adam Roberts³, Loyal Goff^{1,2,4}, Geo Pertea^{5,6}, Daehwan Kim^{5,7}, David R Kelley^{1,2}, Harold Pimentel³, Steven L Salzberg^{5,6}, John L Rinn^{1,2} & Lior Pachter^{3,8,9}

Cufflinks: transcript abundance

• Quantification: Cufflinks implements a linear statistical model to estimate an assignment of abundance to each transcript that explains the observed reads with maximum likelihood.

Cole Trapnell^{1,2,6}, David G Hendrickson^{1,2,6}, Martin Sauvageau^{1,2}, Loyal Goff^{1–3}, John L Rinn^{1,2,7} & Lior Pachter^{4,5,7}

Cufflinks: abundance output

Cufflinks reports abundances as Fragments
Per Kilobase of exon model per Million
mapped fragments (FPKM)

	SRR032239	SRR032271	SRR032238	SRR032272
ENST00000379389	145.60	503.78	34.49	259.24
ENST00000433695	6.15	2.63	5.38	14.00
ENST00000379198	8.34	6.89	4.53	4.21
ENST00000343938	10.62	6.40	6.14	7.76
ENST0000378344	7.58	15.03	7.47	7.55
ENST00000377648	8.61	5.78	2.72	7.32
ENST0000302692	9.26	8.80	5.69	5.14

$$\text{FPKM} = 10^9 \frac{C}{NL}$$

- C: Number of read pairs (fragments) from transcript N: Total number of mapped read pairs in library L: number of exonic bases for transcript
- Normalizes for transcript length and lib. size

- Cudiff
 - Tests for differential expression of a cufflinks assembly

	test_id	gene	log2.fold_change	p_value	q_value	fpkm.SRR032238	fpkm.SRR032239	
ENST000	00177694	TBX21	3.80433	5.00E-05	0.07989	0.255737557	0.09057553	
ENST000	00239461	PRRX1	-5.91726	5.00E-05	0.07989	19.62584291	0.018224123	
ENST000	00252971	MNX1	3.45374	5.00E-05	0.07989	0.376127203	0.407829904	
ENST000	00260227	MMP7	3.62719	5.00E-05	0.07989	1.106081955	0.365472353	
ENST000	00261192	BCAT1	-1.87185	5.00E-05	0.07989	14.26418416	13.46141175	
ENST000	00261978	LTBP2	-3.60277	5.00E-05	0.07989	1.285677603	0.021996299	

Differential analysis of gene regulation at transcript resolution with RNA-seq

Cole Trapnell^{1,2,6}, David G Hendrickson^{1,2,6}, Martin Sauvageau^{1,2}, Loyal Goff^{1–3}, John L Rinn^{1,2,7} & Lior Pachter^{4,5,7}

RNA-Seq:Generate report

Home-made Rscript

Generate report

 Noozle-based html report which describe the entire analysis and provide a general set of summary statistics as well as the entire set of results

Files generated:

index.html, links to detailed statistics and plots

For examples of report generated while using our pipeline please visit our website