

Canadian Centre for Computational Genomics

## Montreal Genomics Analysis Workshop: RNA-Seq

Day1: Introduction to Next Generation Sequencing Mathieu Bourgey, PhD

21-22 August 2018



Canadian Centre for Computational Genomics

#### 1. The technology

Outline

2. Types of data

3. Conclusions

#### **Technology Revolution**



#### Sequencing genomes in Years



#### Project cost: Billions \$

# Sequencing genomes in HOURS/Minutes !!



02012 Burnina, Inc. All rights reserved.

#### Thousands \$

#### Sequencing: Technological Advances

Nb. Sequences/run: 96 Run time: many hours Limitation: 1 plasmid prep per tube! 50 cents/sequence Bacterial genome seq cost : > \$500k using multiple machines... Canadian Centre for Computational Genomics



From. reac generation bior sequencing, say onendure, Hanlee Ji, 2008

#### The next wave of DNA sequencing



#### frequently used terms

- "Massively parallel" sequencing
- "High-throughput" sequencing
- "Ultra high-throughput" sequencing
- "Next generation" sequencing (NGS)
- "Second generation" sequencing

- 2005: 454 (Roche)
- 2006: Solexa (Illumina)
- 2007: ABI/SOLiD (Life Technologies)
- · 2010: Complete Genomics
- 2011: Pacific Biosciences
- 2010: Ion Torrent (Life Technologies)
- 2015: Oxford Nanopore Technologies





# Short Read (Illumina)





# Illumina sequencing is no longer clone-based : replaced by Clusters



#### Illumina sequencing-by-synthesis

Canadian Centre for Computational Genomics



Next-Generation DNA Sequencing Methods, Elaine Mardis, 2008

#### Illumina sequencing-by-synthesis





Next-Generation DNA Sequencing Methods, Elaine Mardis, 2008

#### Illumina sequencing-by-synthesis





Next-Generation DNA Sequencing Methods, Elaine Mardis, 2008

#### Sequencing by synthesis: errors



Errors creep in when some templates get "out of sync," by missing an incorporation or by incorporating 2 or more nucleotides at once



Base caller must deal with this uncertainty. Actual base callers report a *quality score* (confidence level) along with each nucleotide.

Errors are more common in later sequencing cycles, as proportionally more templates fall out of sync

#### Illumina sequencing summary

Canadian Centre for Computational Genomics



#### Advantages:

- Best throughput, accuracy and read length for any 2nd gen. sequencer
- Fast & robust library preparation

#### **Disadvantages:**

 Inherent limits to read length (practically, 150bp) Illumina HiSeq ~3 billion paired 100bp reads ~600Gb, \$10K, 8 days (or "rapid run" ~90Gb in 1-2 days)

Illumina X Ten ~6 billion paired 150bp reads 1.8Tb, <3 days, ~1000 / genome(\$\$) (or "rapid run" ~90Gb in 1-2 days)

<u>Ilumina NovaSeq</u> 20 billion paired 150bp reads 3Tb < 2days



# Long Reads

#### PacBio RS and Sequel systems





4 nucleotides with different fluorescent dye simultaneously present





SMRT Cells containing up to a million ZMWs are processed on PacBio<sup>®</sup> Systems which simultaneously monitor each of the waveguides in real time.

#### PacBio Advantages & limitations



#### Advantages:

- Really long reads (up to 70kb)
- Near random distribution of errors
  - which allows correction in high coverage data
- No PCR bias
- Direct detection of modified nucleotides
  - A really high coverage is needed for some modification detection.
- Circular Consensus Reads (CCS)
  - CCS reads have a low error rate and a length sufficient to solve many long repeats in genomes

#### Limitations:

- The amount of input materials
- The error rate
- The cost

#### Nanopore systems



Use nanopore (hemolysin) with inner diameter of 1nm, about 100,000 times smaller than that of a human hair



#### Nanopore: sequencing



- The DNA sequences are coupled with a zip enzyme which transforms the double helix structure in to a one stranded mollecule
- Each different 5-mer going through the pore will a specific modifcation of the voltage



#### Nanopore:

#### Advantages & limitations



#### Advantages:

- Really long reads (up to 200kb)
- Low-cost, portable instrument
- Easy sample prep
- Can repetitively sequence a given molecule to generate higher quality data

#### Limitations:

- The error rate
- Whole-genome sequencing remains a challenge
- Performance still being tested and optimized
- Data processing



# On the side technology

#### 10x Genomics - Technology









## 10x Genomics: Advantages & limitations



#### Advantages:

- Compatible with widely used Illumina platform
- Compatible with standard DNA/RNA preps
- Minimal input requirements (1–3 ng)
- DNA: High-quality genome assembly
- scRNA: Large number of cell for a limited cost
- Data processing

#### Limitations:

- Vulnerable to Illumina biases and limitations
- DNA: Not true long-read and gapped sequence
- scRNA:
  - Depth per cell
  - Only the 3' end of the transcripts is sequenced
- Data processing

# Applications

Canadian Centre for

|          | Equipment                                    | MUGQIC<br>number | Current Applications                                                                      |  |  |
|----------|----------------------------------------------|------------------|-------------------------------------------------------------------------------------------|--|--|
|          | 454                                          | 3<br>(1)         | Small de novo genome                                                                      |  |  |
|          | Ion Torrent                                  | 1                | Amplicon sequencing<br>Metagenomics                                                       |  |  |
|          | Illumina<br>MiSeq                            | 2                | Validation                                                                                |  |  |
|          | SOLiD                                        | 0                | Transcriptome sequencing (RNA-<br>Seq), Whole Exome Sequencing,                           |  |  |
|          | Illumina<br>NovaSeq<br>HiSeq<br>2500/4000/X) | 12               | Whole Genome Sequencing,<br>ChIPseq, Whole Genome<br>Bisulfate sequencing, DNAse-seq,<br> |  |  |
|          | Pacific<br>Biosciences<br>RS/Sequel          | 2                | Small and medium genomes,<br>Long haplotype sequencing, target                            |  |  |
| Piminion | Nanopore<br>MinIon                           | 1                | Validation                                                                                |  |  |
| 0        | 10x genomics                                 | 1                | Whole genome sequencing<br>De novo genome sequencing<br>Single cell sequencing 23         |  |  |

# Some Key Parameters while designing anadian Centre for your experiment Genomics

- Library type
- Read length
- Error Profile
- Barcoding potential (multiplexing)
- Cost

•

Turn around time

## Different type of sequencing libraries

Canadian Centre for Computational Genomics



#### What are paired reads?



Canadian Centre for Computational Genomics

| 😵 BiCG_2012_Module4.pdf (application/pdf Object) - Mozilla Firefox |                                       |                                       | _ <b>B</b> ×                        |
|--------------------------------------------------------------------|---------------------------------------|---------------------------------------|-------------------------------------|
| Elle Edit View History Bookmarks Tools Help                        |                                       |                                       |                                     |
| bioinformatice ca//Bios/public/BiOG_2012_Module4.pdf               |                                       | ····································· | x Google                            |
|                                                                    |                                       |                                       | - Googie                            |
|                                                                    | 🖞 147% 🔹 🍇 Collaborate 🕈 🥢 Sign 👻 🥅 🔛 | Find                                  |                                     |
|                                                                    |                                       |                                       | <b>/</b>                            |
|                                                                    |                                       |                                       |                                     |
|                                                                    | What are Paire                        | d Reads?                              |                                     |
|                                                                    | what are raile                        | u Neaus:                              |                                     |
|                                                                    |                                       |                                       |                                     |
|                                                                    |                                       |                                       |                                     |
|                                                                    |                                       |                                       |                                     |
|                                                                    | Paired-end Read                       | ls                                    |                                     |
|                                                                    | DNA fragment                          |                                       |                                     |
|                                                                    |                                       |                                       |                                     |
|                                                                    | ATCAA                                 | CTAAG                                 |                                     |
|                                                                    | (                                     |                                       |                                     |
|                                                                    |                                       |                                       |                                     |
|                                                                    | Incort size (IS                       | <b>``</b>                             |                                     |
|                                                                    | linsent size (id                      | >)                                    |                                     |
|                                                                    |                                       |                                       |                                     |
|                                                                    |                                       |                                       |                                     |
|                                                                    |                                       | Slides by M. Brud                     | no                                  |
| Module                                                             |                                       | <b>bio</b> informatics                | ca                                  |
|                                                                    |                                       |                                       |                                     |
| Ø                                                                  |                                       |                                       |                                     |
| Network 🔗 😁 🔊 🕞                                                    |                                       |                                       | ◆ □> (P) + +1 (I) 9:28 PM _         |
|                                                                    |                                       |                                       | _ <sup>™</sup> 🖳 am ()// 3/6/2013 🐂 |

#### Read Length



- Illumina HiSeq:
  - up to 250-300 bp for now but the 100-150bp is still the standard
- Pacbio and MinIon:
  - > 50kb but with a very large range of read lengths in the same run.
- Short Reads are sufficient for re-sequencing applications (known genome reference)
- Longer Reads are beneficial for *de novo* genome assemblies

#### Read Length



Longer reads are also good in transcriptomics:



#### **Error Profile**



# NGS reads have errors; diff. technologies, different rates

| instrument                  | Nanopore  | Pacbio   | Ion Torrent | 454  | Illumina | SOLiD |
|-----------------------------|-----------|----------|-------------|------|----------|-------|
| single-Pass<br>Error rate % | ~12 (1-3) | ~13 (~1) | ~1          | ~0.1 | ~0.1     | ~0.1  |

Source: 2014 NGS Field Guide, Glenn TC.

#### How to deal with errors:

- 1. Remove it: it works for technologies with semi-random error distribution and with higher throughput
- 2. Correct it : it works for non-random errors but needs high depth of sequencing or hybrid sequencing design

## Multiplexing (Barcoding)





8 lanes 150M 2x100 bp reads each

What if only 50M reads per samples are sufficient?

#### Multiplexing (Barcoding)









Canadian Centre for Computational Genomics

1. The technology

2. Types of data

3. Conclusions

# What is the NGS short read problem all about ?



- Strings of 100 to ≈ 50kb letters
- Puzzle of 3,000,000,000 letters
- Usually have 120,000,000,000 letters you need to fit
- Many pieces don't fit :
  - sequencing error/SNP/Structural variant
- Many pieces fit in many places:
  - Low complexity region/microsatellite/repeat



Canadian Centre for Computational Genomics

#### DNAseq

# Why DNAseq?



- Whole genome sequencing:
  - Whole genome SNV detection
  - Structural variant
  - Capture the regulatory region information
  - Cancer analysis
  - De novo genome assembly
- Whole exome sequencing:
  - Cheaper
  - Captures only the coding region information
  - Rare diseases analysis

### DNAseq – SNP Discovery



#### GTTACTGTCGTTGTAATACTCCAC ATGTC

GTTACTGTCGTTGTAATACTCCACGATGTC GTTACTGTCGTTGTAATACTCCACGATGTC GTTACTGTCGTTGTAATACTCCACAATGTC GTTACTGTCGTTGTAATACTCCACGATGTC GTTACTGTCGTTGTAATACTCCACGATGTC GTTACTGTCGTGGTAATACTCCACGATGTC GTTACTGTCGTTGTAATACTCCACGATGTC GTTACTGTCGTTGTAATACTCCACGATGTC GTTACTGTCGTTGTAATACTCCACGATGTC GTTACTGTCGTTGTAATACTCCACGATGTC GTTACTGTCGTTGTAATACTCCACGATGTC GTTACTGTCGTTGTACTACTCCACGATGTC GTTACTGTCGTTGTACTACTCCACGATGTC GTTACTGTCGTTGTACTACTCCACGATGTC GTTACTGTCGTTGTACTACTCCACGATGTC

sequencing errors

An accurate SNP discovery is closely linked with a good base quality and a sufficient depth of coverage

Mopdified from Bionformatics.ca

### DNAseq – structural variants



#### (Re-)sequence genomes to compare to a reference





Canadian Centre for Computational Genomics

#### RNAseq

# RNA sequencing





## **RNAseq Challenges**



- RNAs consist of small exons that may be separated by large introns
  - Mapping reads to the genome is challenging
  - Ribosomal and mitochondrial genes are misleading
- RNAs come in a wide range of sizes
  - Small RNAs must be captured separately
- RNA is fragile and easily degraded
  - Low quality material can bias the data

Modified from Bionformatics.ca

#### Why sequence RNA?



- **Functional studies** 
  - Genome may be constant but experimental conditions have pronounced effects on gene expression
- Some molecular features can only be observed at the RNA level
  - Alternative isoforms, fusion transcripts, RNA editing
- Interpreting mutations that do not have an obvious effect on protein sequence
  - 'Regulatory' mutations
- Prioritizing protein coding somatic mutations (often heterozygous)



Canadian Centre for Computational Genomics

#### **Epigenomics**

#### Epigenetics





From The Cell Biology of Stem Cells (2010)

Studies changes in gene expression which are not encoded by the underlying DNA sequence

> 1) histone modification (accessibility/compaction)

2) DNA methylation

Modified from Felix Krueger

## What is ChIP-Sequencing?



- Combination of chromatin immunoprecipitation (ChIP) with ultra high-throughput massively parallel sequencing
- Allows mapping of protein–DNA interactions *in vivo* on a genome scale
- Why run a ChIP-seq experiment:
  - Transcription factors and other chromatin-associated proteins influence phenotype
  - Can be evaluated for the entire genome in a single experiment



45

Genomics

Mardis, E.R. Nat. Methods 4, 613-614 (2007)



#### Methylseq

## Why Methylseq ?



Cytosine methylation can significantly modify temporal and spatial gene expression and chromatin remodeling.

 Whole-genome bisulfite sequencing (WGBS) provides a comprehensive view of methylation patterns at single-base resolution across the genome.

## DNA Methylation: Background





- DNA methylation is one of the most commonly occurring epigenetic events in the mammalian genome
- DNA methylation plays a role in silencing of genes, and in X-chromosome inactivation
- DNA methylation plays a role in the establishment and maintenance of imprinted genes

## **Bisulfite Sequencing**



Canadian Centre for





1. The technology

2. Types of data

3. Conclusions

#### Sequencing technology summary



- 100-200bp reads
- Up to 600Gbp per run\*
- Very low error rate (<1% bases miscalled)

### Pacbio/Oxford Nanopore:

- Single molecule sequencing (no amplification)
- >50kb bp reads
- 5-10 Gbp per run\*
- Higher error rate (5-15%)
- Can detect modified bases

Canadian Centre for

Computational Genomics





- NGS offers a variety of technologies and methods
- A good knowledge of errors and technicality allows a better choice of analysis and a better understanding of results
- NGS analyses requires both mathematics and informatics skills
- The major challenge is actually link to the analysis, the compute and storage capacities

#### Cost of sequencing



#### Good news: Cost of sequencing rapidly decreasing







Stein, Genome Biol. 2010

#### Will computers crash genomics?





Pennisi, Science, 2011

## About us



**Genome**Canada



Canadian Centre for Computational Genomics





C3G provides bioinformatics **analysis**, **HPC** services and solutions for the life science research community.



#### " The \$1,000 genome, the \$100,000 analysis?" Elaine R. Mardis

